Question

When a certain conductance cell was filled with 0.1 M KCl, it has a resistance of 85 ohm at 25°C. When the same cell was filled with an aqueous solution of 0.052 M unknown electrolyte, the resistance was 96 ohms. Calculate the molar conductance of the electrolyte at this concentration.
[Specific conductance of 0.1 M KCl = 1.29 × 10⁻² ohm⁻¹ cm⁻¹]

Answer-Image

Answer-Image

Similar Questions From Electrochemistry:

Following reactions can occur at cathode during the electrolysis of aqueous silver nitrate solution using Pt electrodes:

(i) State the law which helps to determine the limiting molar conductivity of weak electrolyte. (ii) Calculate limiting molar conductivity of CaSO₄ (limiting molar conductivity of calcium and sulphate ions are 119.0 and 160.0 Scm² mol⁻¹ respectively)

Looking at the setup of an electrochemical cell, what happens when \(E_{ext}\) > 1.1 V

The electrical resistance of a column of 0.05 M KOH solution of diameter 1 cm and length 45.5 cm is 4.55 × 10³ ohm. Calculate its molar conductivity.

The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called ___________. a. Cell potential. b. Electromotive Force. c. Potential difference. d. Cell voltage.

The molar conductivity of 0.025 mol L⁻¹ methanoic acid is 46.1 S cm² mol⁻¹. Calculate its degree of dissociation and dissociation constant. Given λ°(H⁺) = 349.6 S cm² mol⁻¹ and λ°(HCOO⁻) = 54.6 S cm² mol⁻¹.

The conductivity of a 0.01 M solution of acetic acid at 298 K is 1.65 x 10⁻⁴ S cm⁻¹. Calculate molar conductivity () of the solution.

More 3 Marks Questions:

When a certain conductance cell was filled with 0.1 M KCl, it has a resistance of 85 ohm at 25°C. When the same cell was filled with an aqueous solution of 0.052 M unknown electrolyte, the resistance was 96 ohms. Calculate the molar conductance of the electrolyte at this concentration. [Specific conductance of 0.1 M KCl = 1.29 × 10⁻² ohm⁻¹ cm⁻¹]

Complete the following reactions— (i) Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → (ii) 2CrO₄²⁻ + 2H⁺ → (iii) 2MnO₄⁻ + 5C₂O₄²⁻ + 16H⁺ →

The electrical resistance of a column of 0.05 M KOH solution of diameter 1 cm and length 45.5 cm is 4.55 × 10³ ohm. Calculate its molar conductivity.

The magnetic moment of few transition metal ions are given below:

Out of the following pairs, predict with reason which pair will allow greater conduction of electricity: (i) Silver wire at 30°C or silver wire at 60°C. (ii) 0.1 M \(CH_3\)COOH solution or 1 M \(CH_3\)COOH solution. (iii) KCl solution at 20°C or KCl solution at 50°C.

(i) Account for the following : (a) Cu⁺ is unstable in an aqueous solution. (b) Transition metals form complex compounds. (ii) Complete the following equation : CrO₂₇²⁻ + 8H⁺ + 3NO₂⁻ →

Consider the standard electrode potential values (M²⁺/M) of the elements of the first transition series.

Scroll to Top