Consider the reaction: Cr₂O₇²⁻ + 14H⁺ + 6e⁻ -> 2Cr³⁺ + 7H₂O. What is the quantity of electricity in coulombs needed to reduce 1 mol of Cr₂O₇²⁻?

The conductivity of metals decreases while that of electrolytes increases with increase in temperature. Why?
State Kohlrausch law of independent migration of ions. Why does the conductivity of a solution decrease with dilution ?
Calculate pH of following half-cell. Pt, \(H_2\) / \(H_2\)\(SO_4\) , if its electrode potential is 0.03V.
The conductivity of 0.20 M solution of KCl at 298 K is 0.025 Scm⁻¹. Calculate its molar conductivity.
The potential of a hydrogen electrode at pH = 10 is
a. 0.591 V
b. 0.00 V
c. – 0.591 V
d. -0.059 V
Consider the reaction: Cr₂O₇²⁻ + 14H⁺ + 6e⁻ -> 2Cr³⁺ + 7H₂O. What is the quantity of electricity in coulombs needed to reduce 1 mol of Cr₂O₇²⁻?
(i) Give reasons for the following :
(a) Compounds of transition elements are generally coloured.
(b) MnO is basic while Mn₂O₇ is acidic.
(ii) Calculate the magnetic moment of a divalent ion in aqueous medium if its atomic number is 26.
Calculate the molar conductivity and degree of dissociation.
Conductivity of 2.5 × 10⁻⁴M methanoic acid is 5.25 × 10⁻⁵ Scm⁻¹.
Given : = 50.5Scm² mol⁻¹
Out of the following pairs, predict with reason which pair will allow greater conduction of electricity:
(i) Silver wire at 30°C or silver wire at 60°C.
(ii) 0.1 M \(CH_3\)COOH solution or 1 M \(CH_3\)COOH solution.
(iii) KCl solution at 20°C or KCl solution at 50°C.
The magnetic moment of few transition metal ions
are given below:
When a certain conductance cell was filled with 0.1 M KCl, it has a resistance of 85 ohm at 25°C. When the same cell was filled with an aqueous solution of 0.052 M unknown electrolyte, the resistance was 96 ohms. Calculate the molar conductance of the electrolyte at this concentration.
[Specific conductance of 0.1 M KCl = 1.29 × 10⁻² ohm⁻¹ cm⁻¹]
(i) Account for the following :
(a) Cu⁺ is unstable in an aqueous solution.
(b) Transition metals form complex compounds.
(ii) Complete the following equation :
CrO₂₇²⁻ + 8H⁺ + 3NO₂⁻ →