(a) Calculate G° for the reaction
Zn(s) + \(Cu^{2+}\)(aq) → \(Zn^{2+}\)(aq) + Cu(s)
Given: E° for \(Zn^{2+}\)/Zn = -0.76V and E° for \(Cu^{2+}\)/Cu = +0.34 V
R = 8.314 \(JK^{–1}\) \(mol^{–1}\), F = 96500 \(mol^{–1}\)
Zn(s) + \(Cu^{2+}\)(aq) → \(Zn^{2+}\)(aq) + Cu(s)
Given: E° for \(Zn^{2+}\)/Zn = -0.76V and E° for \(Cu^{2+}\)/Cu = +0.34 V
R = 8.314 \(JK^{–1}\) \(mol^{–1}\), F = 96500 \(mol^{–1}\)
![Question 2 Answer-Image](/wp-content/uploads/images/12_Chemistry/Electrochemistry_189_1.png)
Calculate emf of the following cell
Cd/\(Cd^{2+}\) (.10 M)//\(H_+\) (.20 M)/\(H_2\) (0.5 atm)/Pt
[Given E° for \(Cd^{2+}\) /Cd = -0.403V]
How many electrons flow when a current of 5 amps is passed through a solution for 193 sec ? Given F = 96500 C. \(N_0\) = 6.002 × \(10^{23}\) \(mol^{-1}\).
How is electrical conductance of a conductor related with length and area of cross-section of the conductor?
a. G = \(l. a.k^{-1}\)
b. G = \(k. l.a^{-1}\)
c. G = \(k.a. l^{-1}\)
d. G = \(k. l.a^{-2}\)
Consider the reaction: Cr₂O₇²⁻ + 14H⁺ + 6e⁻ -> 2Cr³⁺ + 7H₂O. What is the quantity of electricity in coulombs needed to reduce 1 mol of Cr₂O₇²⁻?
Calculate pH of following half-cell. Pt, \(H_2\) / \(H_2\)\(SO_4\) , if its electrode potential is 0.03V.
The conductivity of an aqueous solution of NaCl in a cell is 92 \(Ω^{−1}\) \(cm^{-1}\) the resistance offered by this cell is 247.8 Ω . Calculate the cell constant.
The electrical resistance of a column of 0.05 M KOH solution of diameter 1 cm and length 45.5 cm is 4.55 × 10³ ohm. Calculate its molar conductivity.
Account for the following :
(i) CuCl₂ is more stable than Cu₂Cl₂.
(ii) Atomic radii of 4d and 5d series elements are nearly same.
(iii) Hydrochloric acid is not used in permanganate titration.
When a certain conductance cell was filled with 0.1 M KCl, it has a resistance of 85 ohm at 25°C. When the same cell was filled with an aqueous solution of 0.052 M unknown electrolyte, the resistance was 96 ohms. Calculate the molar conductance of the electrolyte at this concentration.
[Specific conductance of 0.1 M KCl = 1.29 × 10⁻² ohm⁻¹ cm⁻¹]
The magnetic moment of few transition metal ions
are given below:
(i) Account for the following :
(a) Cu⁺ is unstable in an aqueous solution.
(b) Transition metals form complex compounds.
(ii) Complete the following equation :
CrO₂₇²⁻ + 8H⁺ + 3NO₂⁻ →
The molar conductivity of 0.025 mol L⁻¹ methanoic acid is 46.1 S cm² mol⁻¹. Calculate its degree of dissociation and dissociation constant. Given λ°(H⁺) = 349.6 S cm² mol⁻¹ and λ°(HCOO⁻) = 54.6 S cm² mol⁻¹.
Consider the reaction: Cr₂O₇²⁻ + 14H⁺ + 6e⁻ -> 2Cr³⁺ + 7H₂O. What is the quantity of electricity in coulombs needed to reduce 1 mol of Cr₂O₇²⁻?
Calculate emf of the following cell
Cd/\(Cd^{2+}\) (.10 M)//\(H_+\) (.20 M)/\(H_2\) (0.5 atm)/Pt
[Given E° for \(Cd^{2+}\) /Cd = -0.403V]