A voltage V = V₀ sin ωt is applied to a series LCR circuit. Derive the expression for the average power dissipate over a cycle.Under what conditions is (i) no power dissipated even though the current flows through the circuit, (ii)maximum power dissipated in the circuit ?
The figure shows a series LCR circuit with L = 5.0 H, C = 80 µF, R = 40 Ω connected to a variable frequency of 240 V source. Calculate
(i) When an ac source is connected to an ideal capacitor show that the average power supplied by the source over a complete cycle is zero. (ii) A lamp is connected in series with a capacitor.Predict your observation when the system is connected first across a dc and then an ac source.What happens in each case if the capacitance of the capacitor is reduced ?
(a) Draw graphs showing the variations of inductive reactance and capacitive reactance with frequency of the applied ac source. (b) Draw the phasor diagram for a series RC circuit connected to an ac source. (c) An alternating voltage of 220 V is applied across a device X, a current of 0.25 A flows, which lag behind the applied voltage in phase by π/2radian.If the same voltage is applied across another device Y, the same current flows but now it is in phase with the applied voltage. (i) Name the devices X and Y. (ii) Calculate the current flowing in the circuit when the same voltage is applied across the series combination of X and Y.
An ac voltage V = V₀ sin ωt is applied to a pure inductor L. Obtain an expression for the current in the circuit. Prove that the average power supplied to an inductor over one complete cycle is zero.
An inductor of 200 mH, capacitor of 400 µF and a resistor of 10 Ω are connected in series to ac source of 50 V of variable frequency. Calculate the (a) angular frequency at which maximum power dissipation occurs in the circuit and the corresponding value of the effective current, and (b) value of Q-factor in the circuit.
In the following circuit, calculate (i) the capacitance of the capacitor, if the power factor of the circuit is unity, (ii) the Q-factor of this circuit. What is the significance of the Q-factor in ac circuit ? Given the angular frequency of the ac source to be 100rad/s. Calculate the average power dissipated in the circuit.
In a series LR circuit = R and power factor of the circuit is P₁. When capacitor with capacitance C such that = is put in series, the power factor becomes P₂. Calculate P₁ / P₂.
Scroll to Top