If the function f : R → R be defined by f(x) = 2x – 3 and g : R → R by g(x) = x³ + 5, then find fog and show that fog is invertible. Also, find (fog)⁻¹, hence find (fog)⁻¹(9).
Show that the relation S in the set R of real numbers defined as S = {(a, b) : a, b ∈ R and a ≤ b³} is neither reflexive nor symmetric nor transitive.
Find the equations of the tangent and the normal, to the curve 16x² + 9y² = 145 at the point where x₁ = 2 and y₁ > 0.
Find the equations of the normal to the curve x² = 4y which passes through the point (1, 2).
Consider f : given by f(x) = x² + 4 Show that f is invertible with the inverse of f given by = , where is the set of all nonnegative real numbers.