Processing math: 100%
Find the maximum value of |11111+sinθ1111+cosθ|
If x ∈ N and |x+323x2x| = 8, then find the value of x.
In the interval π2<x<π , find the value of x for which that matrix (2sinx312sinx) is singular.
Write the value of the determinant |pp+1p1p|
If |sinαcosβcosαsinβ|= 12  , write the value of x.
If A is a 3 × 3 matrix, |A|0 and |3A|=k|A|, then write the value of k.
If A and B are invertible matrices of order 3, |A|= 2 and |(AB)1|=16. Find |B.
If A = (4675) , then what is the value of  A(adjA) ?
If |sinαcosβcosαsinβ|= 12  where α and β are acute angles, then write the value of α + β .
Evaluate x if : |2451|=|2x46x|
Given A = (425203110) , write the value of det. (2AA1).
If A is square matrix of order 3 such that |adjA|= 64, find |A|.
If |2xx+32(x+1)x+1|=|1533|, write the value of x.
For what value of x, the given matrix A = (32xx+124) is a singular matrix ?
If A is an invertible square matrix of order 3 and |A| = 5, then find the value of |adj A|.