Simplify :
cosθ (cosθsinθ−sinθcosθ) + sinθ (sinθ−cosθcosθsinθ)
Write a unit vector in the direction of vector →PQ where →p and →q are the points (1, 3, 0) and (4, 5, 6),respectively,
Write the solution of the differential equation dydx=2−y.
Write the value of |276538755986|
Evaluate ∫x3−1x2dx.
Evaluate ∫e2x−e−2xe2x+e−2xdx.
Evaluate ∫(1+logx)2xdx.
Evaluate ∫x3−x2+x−1x−1dx.
Evaluate ∫cos√x√xdx .
Evaluate : ∫etan−1x1+x2dx .
Find the matrix A if (9−14−213) = A + (12−1049)
Find the scalar components of the vector →AB with initial point A(2,1) and terminal point B (– 5, 7).
For a 2 × 2 matrix A = [ aij ], whose elements are given by aij=(i+2j)24 , write the value of a21.
For what value of x, the matrix (1+x73−x8) is a singular matrix ?
If →a =4∧i−∧j+∧k and →b =2∧i−2∧j+∧k then find a unit vector parallel to the vector →a+→b